Abstract
We theoretically demonstrate that the chiral structure of the nodes of nodal semimetals is responsible for the existence and universal local properties of the edge states in the vicinity of the nodes. We perform a general analysis of the edge states for an isolated node of a 2D semimetal, protected by chiral symmetry and characterized by the topological winding number N. We derive the asymptotic chiral-symmetric boundary conditions and find that there are N+1 universal classes of them. The class determines the numbers of flatband edge states on either side off the node in the 1D spectrum and the winding number N gives the total number of edge states. We then show that the edge states of chiral nodal semimetals are robust: they persist in a finite-size stability region of parameters of chiral-asymmetric terms. This significantly extends the notion of 2D and 3D topological nodal semimetals. We demonstrate that the Luttinger model with a quadratic node for j=3/2 electrons is a 3D topological semimetal in this new sense and predict that α-Sn, HgTe, possibly Pr_{2}Ir_{2}O_{7}, and many other semimetals described by it are topological and exhibit surface states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.