Abstract

Solder pastes used in surface mount soldering techniques (SMT) are very complex suspensions containing high volumes of metallic powder in a carrier fluid. The rheological complexity results largely from the carrier fluid itself, which is a suspension of colloidal particles. In this work, we have characterized the rheological properties of a typical carrier fluid and its solder paste containing 64 vol.% metallic powder. A six-blade vane geometry was used to avoid wall slip and sample fracture. All measurements were carried out following pre-shearing and rest time in order to obtain reproducible results. Steady shear experiments showed that the solder paste was highly shear-thinning and thixotropic. In oscillatory shear, the linear viscoelastic domain was found to be very narrow for both the suspending fluid and the paste. Frequency sweep tests in the linear domain revealed a gel-like structure with a nearly constant G′ for the suspending fluid and a slightly increasing G′ for the solder paste. From creep experiments, a yield stress of about 40 Pa was determined for the suspending fluid at temperatures between 25 and 40°C, and of 100 Pa at 4°C. A much larger yield stress, 480 Pa, was determined for the solder paste at 25°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.