Abstract
In discrete RF (Radio Frequency) MEMS (MicroElectroMechanical Systems) packages, MEMS devices were fabricated on Silicon or GaAs (Galium Arsenide) chips. The chips were then attached to substrates with die attach materials. In wafer-level MEMS packages, the switches were manufactured directly on substrates. For both types of packages, when the switches close, a contact resistance of approximately 1 Ohm exists at the contact area. As a result, during switch operations, a considerable amount of heat is generated in the minuscule contact area. The power density at the contact area could be up to 1000 times higher than that of typical power amplifiers. The high power density may overheat the contact area, therefore affect switch performance and jeopardize long-term switch reliabilities. In this paper, thermal analysis was performed to study the heat dissipation at the switch contact area. The goal is to control the “hot spots” and lower the maximum junction temperature at the contact area. A variety of chip materials, including Silicon, GaAs have been evaluated for the discrete packages. For each chip material, the effect of die attach materials was considered. For the wafer-level packages, various substrate materials, such as ceramic, glass, and LTCC (Low-Temperature Cofire Ceramic) were studied. Thermal experiments were conducted to measure the temperature at the contact area and its vicinity as a function of DC and RF powers. Several solutions in material selection and package configurations were explored to enable the use of MEMS with chips or substrates with relatively poor thermal conductivity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have