Abstract

After discovering a discrepancy in the transfer standard currently being disseminated by the National Institute of Standards and Technology (NIST), we have performed a new primary standardization of the alpha-emitter 223Ra using Live-timed Anticoincidence Counting (LTAC) and the Triple-to-Double Coincidence Ratio Method (TDCR). Additional confirmatory measurements were made with the CIEMAT-NIST efficiency tracing method (CNET) of liquid scintillation counting, integral γ-ray counting using a NaI(Tl) well counter, and several High Purity Germanium (HPGe) detectors in an attempt to understand the origin of the discrepancy and to provide a correction. The results indicate that a −9.5 % difference exists between activity values obtained using the former transfer standard relative to the new primary standardization. During one of the experiments, a 2 % difference in activity was observed between dilutions of the 223Ra master solution prepared using the composition used in the original standardization and those prepared using 1 mol·L−1 HCl. This effect appeared to be dependent on the number of dilutions or the total dilution factor to the master solution, but the magnitude was not reproducible. A new calibration factor (“K-value”) has been determined for the NIST Secondary Standard Ionization Chamber (IC “A”), thereby correcting the discrepancy between the primary and secondary standards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call