Abstract

AbstractBurr formation during machining process is a vital role in the assembly lines, even though it is a non value added process but also care should be taken while machining due to non avoiding output generated at the end of material removal process. At present almost all manufacturing sectors faces lot of problems due to these issues and invest more money towards deburring still advanced manufacturing methods available. So, complete burr removal is not possible and only thing is reducing utmost by applying better optimizing techniques, to develop good mechanization methods, selecting optimum process parameters and their conditions. The aim this paper deals about research methods implemented by earlier authors on burr formation especially in drilling. The reason why the present authors selected the drilling is number of automotive and aircraft engineers struggling during structural building works because of these burrs wherever precise measurement needed. In this connection, the authors concentrate their study on previous researcher works related to investigations on experimentation, developing new theoretical mechanisms to minimize burrs, adapt a new technologies available to modify drill bit geometries such that improvement in the minimization of burrs. Finally found that research contributions by changing their drill bit geometry and cutting process parameters have been focused on utilizing the methodologies, changing time to time. In analyzing the performance characteristics with that of input process parameters, several mathematical and empirical models were developed by many researchers so far in their works. Efforts have been made in the direction of optimization of process parameters in drilling for minimizing burr size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.