Abstract

It is well known that PV thin films can be deposited by an extensive range of more or less expensive and complicated techniques (such as sputtering, chemical vapor deposition (CVD), physical vapor deposition (PVD), pulsed laser deposition, atomic layer deposition (ALD)). The present paper focuses on TCO layers applied by chosen techniques, including mainly the ALD and CVD methods. Thin layers of transparent conductive oxides constitute a well-known group of materials with unique properties. Oxides such as ZnO, SnO2, and In2O3 are the most significant materials of this type; some of them are discussed in the paper. From the application point of view in the photovoltaic industry, the goal is to apply a method that will provide the highest value of electric charge conductivity while maintaining the minimum value of absorption in the layer and a reduced value of the reflection coefficient. The implementation of significant achievements in the coming decade is for developing guidelines for metallization processes and TCO layers deposited by the ALD method. The work contains chosen engineering processes, including the fabrication of transparent conductive oxides (TCO) thin films applied to silicon substrates by ALD and CVD for application as emitter conductive coatings in photovoltaic structures and the fabrication front metallization of solar cell using different techniques, including among others laser techniques. Moreover, the work also contains predictions about solar cells, which will be among the most prevalent solar cells in mass production using thin- and thick-film technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call