Abstract

Abstract In the recent years, the using of fossil energy source-based fuels are delivering to the predetermined nature, health and environmental exposure, there is a universal necessitate prepared to well improvement and consumption of renewable energy source and apparatus. With the rapid growth of human life, energy is more essential. The explosive growth of population and energy consumption demands are the exclusive issue of the present world. In response to the energy demands, the growth of highly efficient energy conversion and storage devices. With increasing energy demands and environmental pollution, there is a requirement of the world to great some novel conducting materials consist of Perovskite solar cells (PSCs) which is delivered that excellent photoconversion efficiencies (PCE) compare with the other silicon supported photovoltaics, and also semiconducting materials for the conversion of substitute energy sources and preparation of high high-performance semiconductor devices. Semiconducting thin films play an indispensable role in fashionable science and electronic technology. Among them, the II–VI compound semiconductor thin films are an important class of materials, and they are generally comprehensive wide-band gap materials. In addition, the un-doped and rare-earth metal ions doped zinc selenide (ZnSe) thin films are currently the most demanding and technologically important materials, which have the potential for optoelectronic devices (solar cells, photoelectrochemical cell and light emitting diodes) and are active throughout the entire visible spectrum extending into the infrared wavelengths. Various techniques for depositing thin coatings on these substances are utilized to a greater extent. In this review, the most recent advanced techniques in the application of semiconducting materials-based thin films were produced in various energy-generated fields, particularly solar cells, with a major focus on a review of recent progress in the development of various types of ZnSe thin film-based material for high-performance semiconducting thin film material for solar cell application. Lastly, the advantages and material challenges of semiconductor-based thin films for future sanitary energy device process are described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.