Abstract
Abstract. Marine enhanced rock weathering (mERW) is increasingly receiving attention as a marine-based carbon dioxide removal (CDR) technology. The method aims to achieve ocean alkalinity enhancement (OAE) by introducing fast-weathering rocks into coastal systems. The latter is envisioned to act as a large natural biogeochemical reactor, where ambient physical and biological processes can stimulate rock dissolution, thus generating a concomitant alkalinity release and increasing the seawater's capacity to sequester CO2. Olivine has been put forward as the prime candidate mineral for mERW, but at present, no peer-reviewed results are available from larger-scale field studies in coastal areas, so the information about olivine dissolution in marine systems is largely derived from laboratory experiments. As a result, key uncertainties remain concerning the efficiency, CO2 sequestration potential, and impact of olivine-based mERW under relevant field conditions. In this review, we summarize recent research advancements to bridge the gap between existing laboratory results and the real-world environment in which mERW is intended to take place. To this end, we identify the key parameters that govern the dissolution kinetics of olivine in coastal sediments and the associated CO2 sequestration potential, which enable us to identify a number of uncertainties that still remain with respect to the implementation and upscaling of olivine-based ERW, as well as monitoring, reporting, and verification (MRV). From our analysis, we conclude that the current knowledge base is not sufficient to predict the outcome of in situ mERW applications. Particularly, the impact of pore-water saturation on the olivine dissolution rate and the question of the additionality of alkalinity generation remain critical unknowns. To more confidently assess the potential and impact of olivine-based mERW, dedicated pilot studies under field conditions are needed, which should be conducted at a sufficiently large spatial scale and monitored for a long enough time with sufficient temporal resolution. Additionally, our analysis indicates that the specific sediment type of the application site (e.g., cohesive versus permeable) will be a critical factor for olivine-based mERW applications, as it will significantly impact the dissolution rate by influencing the ambient pore-water pH, saturation dynamics, and natural alkalinity generation. Therefore, future field studies should also target different coastal sediment types.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have