Abstract

Ocean alkalinity enhancement is considered as an effective atmospheric CO2 removal approach, but currently, little is known about the carbon sequestration potential of implementing olivine addition in offshore waters. We investigated the effect of olivine addition on the seawater carbonate system by carrying out a deck incubation experiment in the Northern Yellow Sea; the dissolution rate of olivine was calculated based on the increase in seawater alkalinity (TA), and the CO2 sequestration potential was evaluated. The results showed that the dissolution of olivine increased seawater TA and decreased partial pressure of CO2, resulting in oceanic CO2 uptake from the atmosphere through sea-air exchange; it also increased seawater pH and mitigated ocean acidification to a certain extent. The addition of 1 ‰ olivine had a more significant effect on the seawater carbonate system than 0.5 ‰ olivine addition. The average dissolution rate constant of olivine was 1.44 ± 0.15 μmol m−2 d−1. Assuming that olivine settles completely on the seabed due to gravity, the theoretically maximum amount of CO2 removed by applying 1 tonne of olivine per square meter area in the Northern Yellow Sea is only 2.0 × 10−4 t/m2. Therefore, when olivine addition is implemented in the offshore waters, it is necessary to consider reducing the olivine size, prolonging the settling time of olivine in the water column; and spreading olivine in well-mixed waters to prolong the residence time through repeated resuspension, thus increasing its potential in carbon sequestration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.