Abstract
Reversible transformation between 10-methylacridinium ion (AcrH+) and 9,10-dihydro-10-methylacridine (AcrH2) has been achieved by combining the photo-reduction of AcrH+ by benzyl alcohol derivatives in MeCN at 298 K under irradiation of visible light of λ > 360 nm with the thermal oxidation of AcrH2 by the corresponding benzaldehyde derivatives at 333 K. The photoreduction of AcrH+ by a benzyl alcohol derivative can also be combined with the photo-oxidation of AcrH2 by dibenzyl disulphide under irradiation of light of λ 285 nm which corresponds to the absorption maximum of AcrH2. Under continuous irradiation of light from a Xenon lamp, the AcrH+/ AcrH2 redox pair acts as a photocatalyst for the oxidation of p-chlorobenzyl alcohol by dibenzyl disulphide to yield p-chlorobenzaldehyde and toluene-α-thiol. Reversible transformation between riboflavin-2′,3′,4′,5′-tetra-acetate (Fl) and the corresponding 1,5-dihydroflavin (FlH2) has also been achieved by utilizing all possible combinations of thermal and photochemical reactions in controlling the direction of the redox reaction between Fl and benzenethiol derivatives, i.e., the forward thermal reduction of Fl by benzenethiol derivatives combined with the reverse photo-oxidation of FlH2 by the corresponding disulphides, the forward photo-reduction of Fl and the reverse photo-oxidation of FlH2 under irradiation with light of different wavelengths, and the forward photo-reduction of Fl combined with the reverse thermal oxidation of FlH2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Chemical Society, Perkin Transactions 2
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.