Abstract

In this study, a series of reversible thermochromic microencapsulated phase change materials (TC-MPCMs), exhibiting excellent latent heat storage-release performance, were designed and fabricated successfully. The characterization and microstructure regulation of TC-MPCMs were conducted systematically as well. The core of TC-MPCMs was comprised of crystal violet lactone employed as thermochromic colorant, bisphenol A employed as developer and 1-tetradecanol employed as co-solvent, respectively. These influencing factors of encapsulation process such as the amount of emulsifier, stirring rate, feeding weight of core/shell ratio, acid resistance and thermal cyclic durability were carried out to clarify the effect of various experimental conditions. The surface morphology, shell thickness and core–shell structure of TC-MPCMs were characterized via optical microscope (OM), thermal field emission scanning electronic microscope (TFE-SEM), transmission electron microscope (TEM), respectively. From different scanning calorimetry (DSC) analysis, the performance of temperature of fusion and crystallization and enthalpy of TC-MPCMs under various conditions were measured as well. The results of thermogravimetric (TG) analysis illustrated the influence on thermal stability of TC-MPCMs. In addition, Lab color space obtained by colorimeter is certainly intuitive to observe the colorimetric characteristics of TC-MPCMs as well. More importantly, the reversible thermochromic property associated with phase state of the 1-tetradecanol could also provide a visual evidence of energy storage or release performance of the TC-MPCMs. Furthermore, The TC-MPCMs exhibited excellent stability even after 100th thermal cycling test without any obvious performance degradation, including the morphology, phase change properties and thermal stability. In the end, the fire fighter protective clothing containing TC-MPCMs was designed and fabricated, which could provide adequate thermal protection in the various fire environments. Thus, TC-MPCMs developed in this work showed great potential applications in thermal protective clothing and other thermal regulation fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.