Abstract

The supply voltage to threshold voltage ratio is reduced with each new technology generation. The gate overdrive variation with temperature plays an increasingly important role in determining the speed characteristics of CMOS integrated circuits. The temperature-dependent propagation delay characteristics, as shown in this brief, will experience a complete reversal in the near future. Contrary to the older technology generations, the speed of circuits in a 45-nm CMOS technology is enhanced when the temperature is increased at the nominal supply voltage. Operating an integrated circuit at the prescribed nominal supply voltage is not preferable for reliable operation under temperature fluctuations. A design methodology based on optimizing the supply voltage for temperature-variation-insensitive circuit performance is proposed in this brief. The optimum supply voltage is 45% to 53% lower than the nominal supply voltage in a 180-nm CMOS technology. Alternatively, the optimum supply voltage is 15% to 35% higher than the nominal supply voltage in a 45-nm CMOS technology. The speed and energy tradeoffs in the supply voltage optimization technique are also presented

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.