Abstract

Reverse engineering the brain will require a deep understanding of how information is represented and how computation is performed in the brain. What are the functional operations? What are the knowledge data structures? How are messages encoded? How are relationships established and broken? How are images processed? How does the brain transform signals into symbols? How does the brain generate the incredibly complex colorful, dynamic internal representation that we consciously perceive as external reality? The model presented here hypothesizes that each cortical hypercolumn together with its underlying thalamic nuclei performs as a Cortical Computational Unit (CCU) consisting of a frame-like data structure (containing attributes, state, and pointers) plus the computational processes and mechanisms required to build and maintain it. In sensory-processing areas of the brain, CCUs enable segmentation, grouping, and classification. Pointers stored in CCU frames link pixels and signals to objects and events in situations and episodes that are overlaid with meaning and emotional values. In behavior-generating areas of the brain, CCUs make decisions, set goals and priorities, generate plans, and control behavior. It is suggested that it may be possible to reverse engineer the human brain at the CCU level of fidelity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.