Abstract

The brain is first and foremost a control system that is capable of building an internal representation of the external world, and using this representation to make decisions, set goals and priorities, formulate plans, and control behavior with intent to achieve its goals. The computational model proposed here assumes that this internal representation resides in arrays of cortical columns. More specifically, it models each cortical hypercolumn together with its underlying thalamic nuclei as a Fundamental Computational Unit (FCU) consisting of a frame-like data structure (containing attributes and pointers) plus the computational processes and mechanisms required to maintain it. In sensory-processing areas of the brain, FCUs enable segmentation, grouping, and classification. Pointers stored in FCU frames link pixels and signals to objects and events in situations and episodes that are overlaid with meaning and emotional values. In behavior-generating areas of the brain, FCUs make decisions, set goals and priorities, generate plans, and control behavior. Pointers are used to define rules, grammars, procedures, plans, and behaviors. It is suggested that it may be possible to reverse engineer the human brain at the FCU level of fidelity using nextgeneration massively parallel computer hardware and software. Key Words: computational modeling, human cortex, brain modeling, reverse engineering the brain, image processing, perception, segmentation, knowledge representation

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.