Abstract

Crystallinity of the polymer poly(3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-altthieylenevinylene) (PDVF) adlayers casted from low-boiling-point (L-bp), medium-bp (M-bp), and high-bp (H-bp) solvents was investigated through scanning tunneling microscopy (STM) and analyzed by the assistance of Hansen solubility parameter (HSP) theory and molecular dynamics (MD) simulations. Crystallinity of the PDVF adlayers increases evidently from the L- to H-bp solvents. Also, the solvent with an alkyl chain such as ethylbenzene (EB) facilitates in improving the crystallinity than the one without an alkyl chain such as chlorobenzene (CB) if the solvent bp is present in the same group. The HSP space discloses that EB is a marginal solvent for PDVF in contrast to CB. Quasi-isolate PDVF in the EB solution revealed by MD simulations facilitates the formation of crystallized domains through surface assembling mechanism. However, in CB, interconnected PDVF molecules through intermolecular overlapping tend to generate amorphous structures through direct deposition of the preformed structures in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.