Abstract
Non-linear SVM functions to modify the kernel in the SVM. Each kernel function in linear and non-linear SVMs has several parameters that are used in the classification process. SVM is a method that has advantages in classification, but there are still obstacles in selecting optimal parameters. This research investigates the effect of parameter variations on SVM classification performance on the COVID-19 dataset, using linear, RBF, Sigmoid and polynomial kernels. The analysis shows that the polynomial kernel is superior with the highest performance compared to other kernels. The highest accuracy of 77.57% was achieved with a combination of C values ??of 0.75 and Gamma of 0.75, and an F1-Score value of 76.67% indicating an optimal balance between precision and recall. The performance stability produced by the polynomial kernel provides advantages in classifying the COVID-19 dataset, with more controlled fluctuations compared to other kernels. The interaction between the C and Gamma parameters shows that a Gamma value of 0.75 consistently provides good results, while adjusting the C parameter shows more controlled performance variations. This confirms that appropriate Gamma parameter settings are key in improving the accuracy and consistency of SVM model predictions in this case.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have