Abstract

Noble-metal nanocrystals (NCs) are functional segments of biosensing platforms, but their sensitivity and facet effects are still challenging. Conventional synthesis using surfactants to direct crystal growth unfortunately causes adsorbate-surface hindrance, which not only reduces sensing responses but also leads to misunderstanding on facet-dependence. Herein, we utilize electrochemical CO displacement to remove residual surfactants from facet-engineered Pd NCs, and further investigate the structure-activity relationship on specific facets, for example, {100} in cubes, {111} in octahedrons, and {110} in rhombic dodecahedrons. Along with the remarkably boosted response, facet dependence is obvious for H2O2 sensing after surface cleaning. The Pd{100} shows high sensitivity, low detection limit, and wide applicable concentration range, superior to the {110} and {111}. This can be theoretically interpreted by the befitting *OH binding on {100} and thereby the facilitated H2O2 reduction kinetics. The outstanding selectivity to H2O2 ensures the high efficiency of Pd NCs to measure intracellular H2O2 and recognize different types of cancer cells. Moreover, facet effects are also evidenced in glucose detection, highlighting that this work can provide guidelines to design efficient sensing platforms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call