Abstract
The influence of retrogression and re-aging treatment (RRA) on short transverse tensile properties of 7010 aluminium alloy extrusions was studied. The short transverse ductility of extrusions, which was much lower in the T6 condition, was improved to the optimum level after retrogression and re-aging treatment. It is found that short transverse ductility is influenced by the nature of precipitate particles located along the grain boundary. It is observed that coarsening of the grain boundary precipitates and its copper enrichment that occurs during RRA are found to be the factors responsible for improvement in stress corrosion cracking (SCC) resistance. The optimum retrogression and re-aging schedule is established that gives rise to the best combination of strength, ductility and SCC resistance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have