Abstract

The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstructure and mechanical properties on aging parameters was evaluated by tensile test, hardness test and conductivity measurement. The results show that for the alloys with retrogression and re-aging treatment (RRA), the conductivity increases with the retrogression time and temperature, while the tensile strength decreases. The transmission electron microscopy (TEM) results show that the precipitates η(MgZn2) at grain boundary aggregate apparently with retrogression time and the precipitates inside the matrix exhibit the similar distribution to T6 temper, which comprises fine GP zones, large η′(MgZn2) and η(MgZn2) phases. According to the mechanical properties and microstructure observations, the optimal RRA regime is recommended to be 120 °C, 24 h + 180 °C, 30 min + 120 °C, 24 h. The strength level of the alloy after the optimum RRA treatment is similar to that in T6 condition and the SCC resistance is improved obviously in contrast to T6 condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.