Abstract
Growth-plate (GP) injures in limbs and other sites can impair GP function and cause deceleration of bone growth, leading to progressive bone lengthening imbalance, deformities and/or physical discomfort, decreased motion and pain. At present, surgical interventions are the only means available to correct these conditions by suppressing the GP activity in the unaffected limb and/or other bones in the ipsilateral region. Here, we aimed to develop a pharmacologic treatment of GP growth imbalance that involves local application of nanoparticles-based controlled release of a selective retinoic acid nuclear receptor gamma (RARγ) agonist drug. When RARγ agonist-loaded nanoparticles were implanted near the medial and lateral sides of proximal tibial growth plate in juvenile C57BL/6j mice, the GP underwent involution and closure. Overall tibia length was shortened compared to the contralateral element implanted with drug-free control nanoparticles. Importantly, when the RARγ agonist nanoparticles were implanted on the lateral side only, the adjacent epiphysis tilted toward the lateral site, leading to apical angulation of the tibia. In contrast to the local selectivity of these responses, systemic administration of RARγ agonists led to GP closure at many sites, inhibiting skeletal growth over time. Agonists for RARα and RARβ elicited no obvious responses over parallel regimens. Our findings provide novel evidence that RARγ agonist-loaded nanoparticles can control activity, function and directionality of a targeted GP, offering a potential and clinically-relevant alternative or supplementation to surgical correction of limb length discrepancy and angular deformities.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have