Abstract
The Retinex model is one of the most representative and effective methods for low-light image enhancement. However, the Retinex model does not explicitly tackle the noise problem and shows unsatisfactory enhancing results. In recent years, due to the excellent performance, deep learning models have been widely used in low-light image enhancement. However, these methods have two limitations. First, the desirable performance can only be achieved by deep learning when a large number of labeled data are available. However, it is not easy to curate massive low-/normal-light paired data. Second, deep learning is notoriously a black-box model. It is difficult to explain their inner working mechanism and understand their behaviors. In this article, using a sequential Retinex decomposition strategy, we design a plug-and-play framework based on the Retinex theory for simultaneous image enhancement and noise removal. Meanwhile, we develop a convolutional neural network-based (CNN-based) denoiser into our proposed plug-and-play framework to generate a reflectance component. The final image is enhanced by integrating the illumination and reflectance with gamma correction. The proposed plug-and-play framework can facilitate both post hoc and ad hoc interpretability. Extensive experiments on different datasets demonstrate that our framework outcompetes the state-of-the-art methods in both image enhancement and denoising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.