Abstract
Low-light image enhancement methods based on classic Retinex model attempt to manipulate the estimated illumination and to project it back to the corresponding reflectance. However, the model does not consider the noise, which inevitably exists in images captured in low-light conditions. In this paper, we propose the robust Retinex model, which additionally considers a noise map compared with the conventional Retinex model, to improve the performance of enhancing low-light images accompanied by intensive noise. Based on the robust Retinex model, we present an optimization function that includes novel regularization terms for the illumination and reflectance. Specifically, we use norm to constrain the piece-wise smoothness of the illumination, adopt a fidelity term for gradients of the reflectance to reveal the structure details in low-light images, and make the first attempt to estimate a noise map out of the robust Retinex model. To effectively solve the optimization problem, we provide an augmented Lagrange multiplier based alternating direction minimization algorithm without logarithmic transformation. Experimental results demonstrate the effectiveness of the proposed method in low-light image enhancement. In addition, the proposed method can be generalized to handle a series of similar problems, such as the image enhancement for underwater or remote sensing and in hazy or dusty conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.