Abstract

Retention time (RT) can provide orthogonal information different from that of mass spectrometry and contribute to identifying compounds. Many machine learning methods have been developed and applied to RT prediction. In application, the training data size is usually small in most chromatography systems. To enhance the performance of RT prediction, this study proposes a RT prediction method based on multi-data combinations and adaptive neural network (MDC-ANN). MDC-ANN establishes the RT prediction model for the target chromatographic system through transfer learning and a base deep learning model trained on a big dataset. It selects the optimal molecular representation combination from the multiple input candidates and automatically determines the neural network structure according to the determined input combination. MDC-ANN was compared with two new efficient deep learning methods, three transferring methods and four popular machine learning methods on 14 small datasets and showed advantages in MAE, MedAE, MRE and R2 in most cases. The experiment results illustrated that integrating multiple molecular representations can provide more information, improve the performance of RT prediction and contribute to compound annotation, different chromatographic systems may use different molecular representation combinations to obtain good RT prediction performance. Hence, MDC-ANN which automatically determines the best combination of molecular representations for a specific system is promising for predicting RTs accurately in real applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call