Abstract

In this experiment, a rapid and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was established and validated for the quantitation and pharmacokinetic analysis of eupafolin in rat plasma, utilizing licochalcone B as internal standard (IS). After liquid–liquid extraction of the analyte samples by ethyl acetate, chromatographic separation was achieved using a UPLC HSS T3 column under gradient elution conditions, with the mobile phase consisting of acetonitrile and water (with 0.1 % formic acid). Eupafolin was quantified by multiple reaction monitoring (MRM) in electrospray positive-ion mode (ESI+), employing the mass transition m/z 315.2 → 300.3 for eupafolin and m/z 285.4 → 270.3 for IS. Eupafolin demonstrated excellent linear relationship (r > 0.99) over the concentration range of 1.25–1250 ng/mL, with the lower limit of quantification (LLOQ) of the UPLC-MS/MS assay determined as 1.25 ng/mL. Method validation followed the bioanalytical method validation criteria outlined by the FDA. The accuracy of eupafolin ranged from 86.7 % to 111.2 %, and the precision was less than 12 %. The matrix effect was observed at 92.8 %-98.6 %, while the recoveries exceeded 83.2 %. The established UPLC-MS/MS assay was successfully employed for the pharmacokinetic evaluation of eupafolin in rats. The half-lives (t1/2z) were determined to be 1.4 ± 0.4 h and 2.5 ± 1.4 h for intravenous and oral administration, respectively. Notably, the bioavailability of eupafolin was relatively low (8.3 %). The optimized UPLC-MS/MS technology showed highly sensitive, selective, and effective, rendering it suitable for the pharmacokinetics of eupafolin in preclinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.