Abstract

Summary Heavy metal-induced inhibitory effects are reported to be concomitant with an increase in endogenous abscisic acid (ABA) levels in plant tissues indicating the possibility of this phytohormone mediating a part of the metal-imposed phytotoxicity. We examined this possibility by comparing the seed germination and seedling growth responses of ABA-deficient (aba-1, aba-3 and aba-4) and ABA-insensitive (abi2-1 and abi3-1) mutants of Arabidopsis thaliana to Cd with those of the wild type (Landsberg erecta, Ler). Assuming that Cd imposed a part of its toxic influence via affecting a rise in endogenous ABA level, all ABA mutants studied could be predicted to exhibit reduced responsiveness to Cd exposure in comparison to the wild type. However, the data obtained both in germination and growth assays were not consistent with this prediction. In germination assays, all ABA mutants proved consistently more sensitive than the wild type to Cd. In case of growth (root length and seedling fresh weight), the magnitude of Cd-induced inhibition in ABA mutants (aba-1, abi2-1 and abi3-1) was generally comparable to that in the wild type. Based on these observations a direct mediatory role of ABA in Cd-imposed phytotoxic effects on early growth could be excluded. The possible significance of heavy metal-dependent increase in endogenous ABA levels in plant tissues is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.