Abstract

Habitat destruction can be classified into instantaneous destruction and continuous destruction by the different ways of human destroying habitat. Previous studies, however, always focused on instantaneous destruction. In this study, we develop a universal model, Multi-time scale N-species model, to study and compare the responses of metapopulation dynamics to both kinds of habitat destruction. The model explores that: (1) under instantaneous habitat destruction, species extinction is determined by the proportion of habitat destruction (D) and the structure of metapopulation (q). When D>q, species will go extinct ranked from the best competitor to the worst. When D≤ q, no species will go extinct, but the equilibrium abundances of odd-ranked competitors will decrease, and the equilibrium abundances of even-ranked competitors will increase; (2) under continuous destruction, species extinction is dependent on the speed of habitat destruction and the metapopulation structure. The higher the speed of habitat destruction and the bigger q are, the earlier species go extinct. Usually, there are two possible mechanisms of species extinction: one is that all species go extinct collectively following complete destruction, and the other is that species go extinct in ranked competitive order from best to worst, and the survivals, if they exist, will go extinct collectively following complete destruction. The oscillation amplitudes of inferior competitors are so large as to increase the probability of stochastic extinction under instantaneous destruction. Therefore, it is relatively propitious for the persistence of rare species under slow and continuous destruction, especially when continuous destruction stops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.