Abstract

We studied the N-species competitive coexistence model with direct effect on habitat destruction to analyze the behaviors of abundant and extinct species in the system caused by habitat loss. The nontrivial equilibrium points of the system are determined for a general habitat destruction function. For the trivial equilibrium, species that survived the habitat destruction are identified using eigenvalues of the Jacobian matrix. Solutions of the system are also presented using the recursive method. Three special cases of habitat destruction functions are addressed: continuous destruction, which is a typical habitat destruction; sudden habitat destruction, which is similar to natural phenomena such as earthquakes or floods; and sudden habitat destruction with aftershocks. The proportional abundances of 50 species are numerically portrayed in each case. We found that the survival of a species is guaranteed if its corresponding eigenvalue is positive. However, the fact that a species has negative corresponding eigenvalue does not guarantee its extinction, as this also depends on the initial number of that species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.