Abstract

In arid and semi-arid inland deserts, one of the environmental stresses for plants is recurrent sand burial, which can influence the physical and biotic microenvironments of the plants and soil. Previous studies have shown that different levels of sand burial have different effects on plants. Slight sand burial could increase the height increment, leaf biomass and the number of new ramets of the plants while heavy sand burial could impair the growth of the plants and even decrease their chances of survival. In other words, below a certain threshold level of burial, the growth of plants is stimulated probably because of multiple factors. However, as the level of burial increases, the positive response starts to decline until it becomes a negative value. Arid and semi-arid inland deserts are frequently colonized and stabilized by many rhizomatous clonal plants. Clonal physiological integration often helps clonal plants buffer local environmental stress encountered by ramets. A rhizomatous clonal semishrub, Hedysarum laeve (H. laeve), is the dominant plant species and important for vegetation restoration in the Mu Us sandland. To investigate whether clonal integration can increase the threshold of sand burial and help rhizomatous H. laeve tolerate heavy sand burial, we conducted a field experiment. The results showed that slight sand burial could accelerate ramet growth and enhance leaf biomass, stem biomass and shoot biomass, while heavy sand burial reducesed the biomass of the plant and impairs survival and growth of the ramets. Clonal integration increased the threshold of sand burial. Under heavy sand burial, ramets connected to other ramets not buried in sand were more in terms of height increment, stem biomass, leaf biomass and shoot biomass compared to the ramets encountering sand burial but disconnected from other ramets. It suggested that clonal physiological integration could help H. laeve ramets tolerate relatively heavy sand burial. We also discussed that clonal integration plays a role in H. laeve presence in the Mu Us sandland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.