Abstract

Environments are ubiquitously heterogeneous in nature, and clonal plants commonly benefit from both clonal integration and foraging responses in heterogeneous environments. While many studies have examined clonal integration and foraging responses separately, few have tested the effect of clonal integration on the foraging response of clonal plants to environmental heterogeneity. We grew offspring ramets of each of three clonal plants (Hydrocotyle vulgaris, Duchesnea indica, and Glechoma longituba) in both homogeneous and heterogenous soil environments and severed their stem connection to a mother ramet (to prevent clonal integration from the mother ramet) or kept it intact (to allow clonal integration). Without clonal integration from the mother ramet, soil heterogeneity had no effect on biomass or number of ramets for any of the three species. With clonal integration, soil heterogeneity also had no effect on biomass or number of ramets of D. indica and G. longituba, but significantly decreased biomass and marginally significantly decreased number of ramets of H. vulgaris. Without clonal integration, offspring ramets did not demonstrate either shoot or root foraging responses in terms of total, shoot and root biomass and ramet number in the heterogeneous soil environment in any of the three species. With integration, offspring ramets of H. vulgaris also did not demonstrate either root or shoot foraging responses, but offspring ramets of G. longituba demonstrated both root and shoot foraging responses, and those of D. indica demonstrated a root foraging response when they grew in the heterogeneous soil environment. We conclude that clonal integration can alter the foraging response of clonal plants, but this effect is species-specific. Our results also suggest that foraging responses of clonal plants in heterogeneous soil environments may not necessarily benefit the growth of clonal plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.