Abstract

Plant diversity and soil microbial diversity are closely related, and they maintain the health and stability of terrestrial ecosystems. As a hotspot region of global biodiversity research, both air temperature and precipitation of the Qinghai-Xizang Plateau tend to increase in future. Based on an overview of the responses of grassland/alpine ecosystems to seasonal asymmetric warming and increased precipitation worldwide, we elaborated the advancements and uncertainties on the responses of plant diversity and soil microbial diversity to warming and increased precipitation in alpine grasslands on the Qinghai-Xizang Plateau. The future research focus of plant diversity and soil microbial diversity in the alpine grasslands of the Qinghai-Xizang Plateau under climate warming and increased precipitation was proposed. Generally, previous studies found that the responses of plant species diversity and soil microbial species diversity to warming and increased precipitation differed between alpine meadows and alpine steppes, but few studies focused on their responses to warming and increased precipitation in alpine desert steppes. Previous studies mainly focused on species diversity, although phylogenetic and functional diversities are also important aspects of biodiversity. Previous studies mainly explained responses of plant diversity and soil microbial diversity to warming and increased precipitation based on niche theory, although neutral theory is also the other important mechanism in regulating biodiversity. Moreover, previous studies almost ignored the coupling relationship between plant diversity and soil microbial diversity. Therefore, the following four aspects need to be strengthened, including the responses of plant diversity and soil microbial diversity to warming and increased precipitation in alpine desert steppes, the responses of plant and soil microbial phylogenetic diversity and functional diversity to warming and increased precipitation, combining the niche theory and neutral theory to examining the mechanism of biodiversity, and the coupling relationships between plant diversity and soil microbial diversity under warming and increased precipitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call