Abstract

The Raman spectra of graphene with three different types of point defects, namely, a mono-vacancy, a di-vacancy, and a Stone–Wales defect, was calculated within a non-orthogonal tight-binding model using supercells of graphene with a single defect. The defects were found to modify the electronic structure and the phonons of graphene giving rise to new optical transitions and defect-related phonons. Based on the calculated Raman spectra, we determined the Raman lines that can serve as signatures of the specific defects. The comparison of the calculated Raman intensity of the graphitic (G-) band of perfect graphene and graphene with defects shows that the intensity can be enhanced up to one order of magnitude by the presence of defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.