Abstract

Electron transport in quantum devices is governed by discrete quantum states due to electron confinement. A crucial requirement for the modeling of quantum devices is the the numerical identification and resolution of these quantum states. We present an algorithm utilized in our general purpose quantum device simulator (NEMO), where we locate the resonances of the system first and then generate the optimized grid used to integrate over the resonances. We find this algorithm important in the modeling of coherent transport involving ultrafine resonances and crucial for the modeling of incoherent transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.