Abstract

The fundamental question of how the flow velocity of the background plasma can influence the motion of magnetohydrodynamics instabilities and, in the ultimate analysis, their stability is addressed. The growth of resistive-wall-mode instabilities in toroidal confinement devices well represents one example of such a problem. In this Letter, we illustrate a new strategy that allowed, for the first time in a reversed field pinch experiment, a fully controlled rotation of a nonresonant instability by means of a set of active coils and how the new findings compare with numerical modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.