Abstract

The bowl-shaped molecules of the nanocarbon material called sumanene have structural flexibility (bowl inversion). In the case of the sumanene molecule used as an intercalant between graphene layers, it has been predicted that holes and electrons are unevenly distributed according to the bowl inversion. Using the property of sumanene molecules, we expected that resistive switching for the nonvolatile memory applications could be achieved by the sumanene-inserted bilayer graphene. In this study, metal–insulator–metal devices with sumanene-inserted bilayer graphene are fabricated. As a result, it is observed that the resistance of the sumanene-inserted bilayer graphene changes by applying voltage, demonstrating resistive switching characteristics. This result implies the possibility of realizing a novel ultra-thin resistive memory device using nanocarbon technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call