Abstract
This work reports forming free/self-rectifying resistive switching characteristics and dependency of the top electrode (TE) of a crystalline HfO2-based resistive switching memory device. In the memory cells, nonlinear bipolar resistive switching characteristics, i.e., an asymmetric current-voltage curve like the Schottky diode, was observed. In addition, the device exhibits resistive switching behaviors without forming process, which makes it possible to switch the resistance state under ultra-low current levels of <10 nA. In addition, compared to the resistive switching of the proposed resistive switching memory devices with different TEs, the VSET was decreased when using TE with lower work function, and the height read margin was obtained in the sample with the Ni TE, covering over 56 × 56 arrays. Consequently, these results indicate that the interface control resistive switching properties in memory structures having the Schottky junction warrant the realization of selector-free resistive switching memory cells in a high-density crossbar array.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.