Abstract
In this work, we study the resistive switching behavior of a new model metal/insulator/metal (MIM) junction. The MIM junction consists of titanium front electrode, zinc oxide insulation layer and molybdenum back electrode. The Ti/ZnO/Mo structure was prepared on 3x3 cm2 soda lime glass substrates using dc magnetron sputtering for metal electrodes and rf magnetron sputtering for ZnO layer. The thicknesses of Ti, ZnO and Mo films were controlled at 200nm, 50nm and 500nm, respectively. The crystalline structure and microstructure of the films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The current-voltage (I-V) characteristics of the device cells were obtained by using dc voltage sweep mode. The XRD spectra of the devices show Mo(100) and ZnO(002) preferred orientations. The Mo and ZnO film surfaces exhibit dense crystallized grains with the root mean square roughness (RMS) of 1.0 and 1.4 nm, respectively. The device cells behave unipolar resistive switching characteristics with reversible, controllable and reliability within 150 cycles. The difference between high resistive state (HRS) and low resistive state (LRS) is about 103 times. A low operating voltage range of 0.50-0.60V is obtained for switching from HRS to LRS at a current compliance of 10mA. The new MIM structure was demonstrated and suggested a potential to use as nonvolatile memory application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.