Abstract

ABSTRACTThe residue number system (RNS) is an unconventional number system which can lead to parallel and fault-tolerant arithmetic operations. However, the complexity of residue-to-binary conversion for large number of moduli reduces the overall RNS performance, and makes it inefficient for nowadays high-performance computation systems. In this paper, we present an improved approximate Chinese remainder theorem (CRT) with the aim of performing efficient residue-to-binary conversion for general RNS moduli sets. To achieve this aim, the required number of fraction bits for accurate residue-to-binary conversion is derived. Besides, a method is proposed to substitute fractional calculations by similar computations based on integer numbers to have a hardware amenable algorithm. The proposed approach results in high-speed and low-area residue-to-binary converters for general RNS moduli sets. Therefore, with this conversion method, high dynamic range residue number systems suitable for cryptography and digital signal processing can be designed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.