Abstract
Background/Objectives: Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) is widely used in the dental industry as a photoinitiator for resin-based materials, while its use may be further limited given its toxicological risks. The aim of this study was, therefore, to analyze the residual TPO content of 3D-printed resin-based dental splint materials. Methods: Six resin-based splint materials were analyzed: LuxaPrint Ortho Plus (DMG), FREEPRINT splint 2.0 (Detax), optiprint splint (Dentona), KeySplint Soft (KeyPrint), FREEPRINT ortho (Detax), V-Print splint comfort (Voco). Grid-shaped specimens were fabricated using the recommended workflow of each manufacturer (n = 18). TPO extraction was conducted using a maximum of eight extraction cycles of 72 h at a temperature of 37 °C until no more TPO eluates were detected by high-performance liquid chromatography (HPLC). The margin of safety (MoS) was calculated as the ratio between the Derived No-Effect Level (DNEL) and the estimated exposure based on the amount of TPO extracted. Results: The total amount of extracted TPO was the lowest for LuxaPrint Ortho Plus (Mean ± SD; 44.0 ± 17.1 ng/mL), followed by optiprint splint (80.6 ± 21.1 ng/mL), FREEPRINT splint 2.0 (127.4 ± 25.3 ng/mL), FREEPRINT ortho (2813.2 ± 348.0 ng/mL), V-Print splint comfort (33,424.6 ± 8357.9 ng/mL) and KeySplint Soft (42,083.5 ± 3175.2 ng/mL). For all tested materials, the calculated MoS was above the critical value of 1, demonstrating toxicological safety in the cured, clinically relevant state. Conclusions: Large differences in the residual TPO content were observed between the materials. Although the TPO content in the uncured state may exceed toxicological safety limits, appropriate curing of the investigated materials resulted in a significant reduction in TPO elution and, thus, in products with a very low toxicological risk for the patient.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have