Abstract

ObjectiveTo evaluate and compare the viscoelastic properties of dentine and resin-based dental materials by bulk compressive test and the Burgers model. Materials and methodsSound dentine, three resin composites as well as a resin-based cement were prepared into cylindrical specimens (n = 8). A bulk compressive creep test was applied with a constant load of 300 N (23.9 MPa) for 2 h, followed by another 2 h recovery. The maximum strain, creep stain, percentage of recovery and permanent set was measured using a linear variable displacement transducer. The viscoelastic properties were characterized via the Burgers model, and the instantaneous elastic, viscous as well as elastic delayed deformation were separated from the total strain. Data were analysed via ANOVA (or Welch's Test) and Tukey (or Games–Howell Test) with a significance level of 0.05. ResultsSound dentine presented the lowest maximum strain, creep strain, permanent set and the highest percentage of recovery, followed by 3 resin composites with comparable parameters, while the cement showed a significantly higher maximum strain, permanent set and lower percentage of recovery (p < 0.001). The Burgers model presented acceptable fits for characterization viscoelastic processes of both dentine and resin-based dental materials. Viscous and elastic delayed strain of dentine was significantly lower than those for tested materials (p < 0.001) with the highest instantaneous elastic strain percentage. Similar viscous and delayed strain was found among the 4 resin-based materials (p > 0.05). SignificanceSound dentine exhibited superior creep stability compared to resin-based dental materials. The viscous deformation in sound dentine could be ignored when loading parallel to dentine tubules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.