Abstract

Varied SiNx films have been deposited by low pressure chemical vapor deposition from silane SiH4 and ammonia NH3 and the influences of the deposition parameters (temperature, total pressure and NH3/SiH4 gaseous ratio) on the film deposition rate, refractive index (assessed at a 830 nm wavelength), stoichiometry and thermomechanical stress are investigated and correlated. Low stress (≈600 MPa) Si3N4 films are obtained for the highest deposition temperature and the lowest total pressure but the gaseous ratio is shown to be the dominant parameter. According to the SiNx stoichiometry, silicon-rich silicon nitride and nitrogen-doped silicon (called NIDOS) depositions are obtained and compressive to tensile stresses are reported. A maximum in compressive stress is put into evidence for N/Si ratio roughly equal to 0.7 and is related to the cumulated effects of silicon nitridation and crystallization, characterizing the transition between nitrogen-doped silicon and silicon-rich silicon nitride. Finally, by considering stress, deposition rate, nonuniformity along the load and resistance to alkaline solutions, optimal (silicon-rich) silicon nitride deposition conditions are proposed for microelectromechanical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.