Abstract

The effects of residual stresses, which are caused by the temperature difference arising after polymerisation of bone cement, on the fracture energies of cement–bone and cement–implant interfaces have been examined by using both experimental and numerical works. Only fracture loads of the test specimen having interfacial cracks have been measured in the experimental stage. The values of fracture loads and temperature difference after polymerisation have been applied to finite element models of the test specimens to calculate critical J-integral values of these both interfaces in the numerical stage. In addition, fracture energies of bone and cement, have been obtained by experimentally, using three-point bending test method The results have shown that residual stresses can produce changes in the fracture energies of these bimaterial systems, especially in cement-implant interface and J IC values of interfaces are considerably smaller than the experimentally determined J IC values of cement and bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.