Abstract
PurposeThe purpose of this paper is to investigate, the effects of residual stress and microstructure on the corrosion behaviour of carburised 18CrNiMo7-6 steel in a 3.5% NaCl aqueous solution.Design/methodology/approachThe electrochemical tests were conducted using an electrochemical workstation with a three-electrode system in a 3.5% NaCl aqueous solution, the residual stress of each working face was measured by a high-speed residual stress analyser, and microstructure of different carburised layers were observed scanning electron microscopy. Finally, the effect of carbon content, microstructure and residual stress on the corrosion behaviour of the steel was discussed.FindingsThe results showed that the residual compressive stress in the carburised layer initially increased and subsequently decreased with increasing depth of the carburised layer, reaching stability in the matrix layer. The electrochemical tests before and after stress reduction showed that the electrochemical impedance and the electrochemical potential increased with the reduction of residual compressive stress.Originality/valueThe residual compressive stress in the carburised layer initially increases and subsequently decreases with increasing carburised layer depth. The electrochemical impedance and the electrochemical potential increased with the reduction of residual compressive stress. The general relationship between electrochemical potential and residual stress was established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.