Abstract

The low-frequency noise is the most important influence on the low frequency resolution and sensitivity in tunnel junction magnetoresistance(TMR) sensors and giant magnetoresistance (GMR) sensor for the large noise power density. In this paper, We describe the 1/f noise characteristics, sources, theoretical models, testing methods and noise reduction measures for TMR sensors and GMR sensors, and the detailed physical model of 1/f noise in the tunnel junction magnetoresistive sensor is explained. By nano-simulation software Virtual NanoLab, Fe/MgO/Fe magnetic tunnel junctions (MTJs) with different thicknesses of MgO layer are studied. Their tunneling probabilities and TMR change rates are simulated and calculated, the conservative and the optimistic estimates of the Change rate of TMR are 98.1 % and 10324.55%.While the influence of MgO thickness on noise is studied through the MTJ model. To study the noise dependance on external magnetic field, an magnetic shielding equipment for noise measurement is set up, and the tests show that the noise in the magnetic shielding environment is significantly reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.