Abstract
The regional collaborative innovation system is a nonlinear complex system, which has obvious uncertainty characteristics in the aspects of member selection and evolution. Ant colony algorithm, which can do the uncertainty collaborative optimization decision-making, is an effective tool to solve the uncertainty decision path selection problem. It can improve the cooperation efficiency of each subsystem and achieve the goal of effective cooperation. By analysing the collaborative evolution mechanisms of the regional innovation system, an evaluation index system for the regional collaborative innovation system is established considering the uncertainty of collaborative systems. The collaborative uncertainty decision model is constructed to determine the regional innovation system’s collaborative innovation effectiveness. The improved ant colony algorithm with the pheromone evaporation model is applied to traversal optimization to identify the optimal solution of the regional collaborative innovation system. The collaboration capabilities of the ant colony include pheromone diffusion so that local updates are more flexible and the result is more rational. Finally, the method is applied to the regional collaborative innovation system.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have