Abstract
The quality of collision detection algorithm directly affects the performance of the whole simulation system. To address the low efficiency and low accuracy in detecting the collisions of flexible cloths in virtual environments, this paper proposes an oriented bounding box (OBB) algorithm with a simplified model, tree structure for a root-node double bounding box, and continuous collision detection algorithm incorporating an OpenNN-based neural network optimization. First, for objects interacting with the cloths with more complex modeling, the model is simplified with a surface simplification algorithm based on the quadric error metrics, and the simplified model is used to construct an OBB. Second, a bounding box technique commonly used for collision detection is improved, and a root-node double bounding box algorithm is proposed to reduce the construction time for the bounding box. Finally, neural networks are used to optimize the continuous collision detection algorithm, as neural networks can efficiently process large amounts of data and remove disjoint collision pairs. An experiment shows that the construction of an OBB using the simplified model is almost identical to that of the original model, but the taken to construct the OBB is reduced by a factor of approximately 2.7. For the same cloth, it takes 5.51%–11.32% less time to run the root-node double bounding box algorithm than the traditional-hybrid bounding box algorithm. With an average removal rate nearly identical to that of the traditional filtering method, the elapsed time is reduced by 7%–11% by using the continuous collision detection algorithm based on an OpenNN neural network optimization. The simulation results are realistic and in line with the requirements for real-time cloth simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.