Abstract

Near-well blockage caused by asphaltene deposition often occurs during the process of crude oil exploitation. It can reduce the porosity and permeability of reservoirs and seriously affects the migration and exploitation of oil and gas. In this paper, removing near-well blockage caused by asphaltene deposition using sonochemical method is investigated. Six PTZ transducers with different parameters are used to study the deplugging effect. Results show that the optimal ultrasonic frequency and power for plugging removal are 20kHz and 1000W respectively. it is found that lower ultrasonic frequency is good for asphaltene deposition plug removal when ultrasonic power is constant; as the power of the sensor increases, the effect of removing the asphaltene deposition plug gets better, ultrasonic power can well make up for the attenuation of ultrasonic energy caused as frequency increases; the effects of removing asphaltene deposition plug for the three cores with different initial gas logging permeability all get worse no matter what type of transducer is used; the effect of asphaltene deposition plug removal for the three cores samples all become better and then tend to be stable as ultrasonic treatment time increases further; considering of reducing construction cost and oil reservoir protection, ultrasonic processing has a lot of unexampled advantages compared with chemical injection, such as good adaptability, low cost, simple operation, non-pollution and benefit for the sustainable development of oil field; affected by the synergistic effect of ultrasonic and chemical agents, the combined treatment effect of ultrasound and chemical agents is significantly better than using ultrasound or chemical agents alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.