Abstract

The fatigue crack growth analysis of nuclear piping is a nonlinear calculation process. The loading sequence and combination mode could affect the results. How to consider these effects is unclear. Fatigue crack growth analysis includes a large number of nonlinear iterative calculations, and the calculation speed is slow. This paper selects carbon steel nuclear piping as the research object. Based on the analysis process provided by ASME code XI volume, a simplified analysis method is explored by introducing the reference crack depth a’ and the envelope transient. The simplified analysis method is conservative because it has been proved that the crack growth rate is positively related to the crack size only if the maximum stress intensity factor is greater than 0 and the minimum stress intensity factor is less than 0. The simplified analysis method is proved to be able to significantly improve the calculation speed by comparing the number of iterative calculations in the simplified analysis method and in the conventional analysis method. The results indicate that the simplified analysis method could provide a conservative way of loading and combining the complex transients and could significantly reduce the number of nonlinear iterative calculations in the process of crack fatigue growth analysis for carbon steel nuclear piping when the maximum stress intensity factor greater than 0 and the minimum stress intensity factor is less than 0.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call