Abstract

A physically-based model is presented for the prediction of fatigue crack growth in Ti–6Al–4V. The model assumes that the crack extension per cycle is directly proportional to the change in the crack-tip opening displacement, during cyclic loading between the maximum and minimum stress intensity factor. The extent of irreversibility is also assumed to exhibit a power law dependence on the effective stress intensity factor range. A simple power law equation is then derived for the prediction of fatigue crack growth as a function of the effective stress intensity factor range. The model is validated for fatigue crack growth in the near-threshold, Paris and high-Δ K regimes. The fatigue crack growth mechanisms associated with the parametric combinations of stress intensity factor ranges and maximum stress intensity factor are then summarized on fatigue mechanism maps. Mechanistically-based fatigue crack growth relationships are thus obtained for the prediction of fatigue crack growth in the near-threshold, Paris and high-Δ K regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.