Abstract
The evolution of ecological pattern caused by human activities has altered the terrestrial carbon cycle process, and it is important to explore systematic approaches to study the relationship between ecological pattern and carbon sequestration function within regions. From the new perspective of the pattern-process-function in landscape ecology, this study couples NPP-InVEST, GeoDa, MOP-PLUS, and GeoDetector models to construct a conceptual cascade framework of “Land use pattern-Evolution process-Carbon sequestration function” (LEC), which provides a new epistemology and methodology for increasing carbon sink and mitigating down carbon source. Based on natural and socioeconomic elements, the use of LEC is illustrated in the Beijing-Tianjin-Hebei (BTH) region, the land use pattern, evolution process, and carbon sequestration function from 2000 to 2020 were analyzed, the trends of carbon storage in 2030 under four development scenarios were simulated, the driving mechanism of carbon sequestration function was studied, and the carbon sequestration function enhancement strategy based on the LEC was proposed. The results indicate that the land use pattern determines the spatial distribution and aggregation of carbon sequestration function, and the evolution process forms a low-carbon zone with construction land expansion, leading to a reduction in carbon storage. However, the ecological protection simulation scenario increases the high-carbon zone, which effectively slows down the decreasing trend of carbon sequestration function. Based on a comprehensive understanding of LEC, regional carbon storage can be enhanced through scientific allocation, priority protection, and efficient utilization of land use pattern. LEC contributes to the sustainability of complex natural-social-economic systems and provides an innovative approach for regional landscape pattern optimization policy formulation and carbon sequestration function enhancement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.