Abstract

As an important carbon sink indicator, the vegetation net primary productivity (NPP) is key and helpful for understanding regional carbon sequestration and storage of mining areas. Systematic analysis of NPP of the ecological reconstruction process in mining areas can effectively contribute to local governments and related departments for making ecological decisions under the “double carbon goals” (“peak of carbon release” and “carbon neutrality”) and help to promote regional sustainable development. In this study, we used the CASA model to systematically assess the temporal and spatial evolution characteristics of NPP of Huangshi City from 1990 to 2018. Meanwhile, various scenarios were set up to study the effects of climate factors, landscape pattern evolution, and ecological restoration on regional carbon storage. Our results documented that (1) NPP of the study area an increasing trend from 1990–2018 shows and exhibits significant spatial heterogeneity; (2) the significant increase of NPP was mainly in the restored mining areas, indicating that the ecological restoration of mining areas can effectively improve the regional carbon sequestration capacity; (3) from 1990 to 2018, climate change released 0.136 TgC, while landscape pattern change contributed to carbon storage with 0.266 TgC; and (4) the restoration and reconstruction of vegetation in the mining areas is an important way to achieve carbon neutrality of Huangshi City in the future, and the changes of NPP varied among different ecological restoration modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call